

Research School for Fluid Mechanics

Melting of Cylindrical Laboratory Icebergs

Morphology, capsizing and plumes

Edoardo Bellincioni, WHOI - GFD Program, 1st August 2024

Supervised by

D. Lohse

S.G. Huisman

www.CHASINGICE.com

Melting

How does freely floating ice melt?

Rotational stability

Why and how does it rotate?

Interaction with surroundings

 In what fluid is the ice immersed? How is the fluid affected?

What to expect

A known solution

 $T(t=0) = T_0$

Ice

T(t=0)=0

 $R(t=0) = R_0$

3D (sphere), no gravity

Water

Temperature in the liquid

$$\partial_t T = \alpha \Delta T$$

Laplacian in 3D

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}$$

Scaled variable

$$\Theta = rT$$

New PDE

$$\frac{\partial \Theta}{\partial t} = \alpha \frac{\partial^2 \Theta}{\partial r^2}$$

With BC

$$T(r,0) = T_0, r > R$$

 $\lim_{r \to \infty} T(t,r) = T_0, t > 0$
 $T(R(t),t) = 0, t > 0$

With BC

$$\Theta(r,0) = r T_0$$

$$\Theta(R(t), t) = 0$$

A known solution

3D (sphere), no gravity

New PDE

With BC

$$\frac{\partial \Theta}{\partial t} = \alpha \frac{\partial^2 \Theta}{\partial r^2}$$

$$\Theta(r,0) = r T_0$$

$$\Theta(R(t), t) = 0$$

Solution (known)

$$\Theta(r,t) = \frac{T_0}{2\sqrt{\pi\alpha t}} \int_0^\infty (R + \xi') \{ exp[-(r - R - \xi')^2/4\alpha t] - exp[-(r - R + \xi')^2/4\alpha t] \} d\xi'$$

Gradient at the boundary

$$\left. \frac{\partial \Theta}{\partial r} \right|_{r=R} = T_0 \left\{ 1 + \frac{R}{\sqrt{\pi \alpha t}} \right\}$$

Thus

$$\left. \frac{\partial T}{\partial r} \right|_{r=R} = T_0 \left\{ \frac{1}{R} + \frac{1}{\sqrt{\pi \alpha t}} \right\}$$

Applying heat balance at the boundary (Stefan condition)

$$\frac{dm}{dt}\mathcal{L} = 4\pi R^2 k \frac{\partial T}{\partial r} \Big|_{r=R}$$

$$= 4\pi R^2 k T_0 \left\{ \frac{1}{R} + \frac{1}{\sqrt{\pi \alpha t}} \right\}$$

A known solution 3D (sphere), no gravity

$$\frac{dm}{dt}\mathcal{L} = 4\pi R^2 k T_0 \left\{ \frac{1}{R} + \frac{1}{\sqrt{\pi \alpha t}} \right\}$$

Considering the mass loss at the surface of a sphere

$$\frac{dm}{dt} = 4\pi R^2 \rho_s \frac{dR}{dt}$$

Putting everything together

$$\frac{dR}{dt} = \frac{kT_0}{\rho_s \mathcal{L}} \left\{ \frac{1}{R} + \frac{1}{\sqrt{\pi \alpha t}} \right\}$$

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 18, NUMBER 11

NOVEMBER, 1950

On the Stability of Gas Bubbles in Liquid-Gas Solutions

P. S. EPSTEIN AND M. S. PLESSET

California Institute of Technology, Pasadena, California

(Received July 31, 1950).

With the neglect of the translational motion of the bubble, approximate solutions may be found for the rate of solution by diffusion of a gas bubble in an undersaturated liquid-gas solution; approximate solutions are also presented for the rate of growth of a bubble in an oversaturated liquid-gas solution. The effect of surface tension on the diffusion process is also considered.

In 2D?

No luck whatsoever

A known solution

3D (sphere), no gravity

Water $T(t=0) = T_0$

$$\begin{aligned} &\text{Ice} \\ &T(t=0)=0 \\ &R(t=0)=R_0 \end{aligned}$$

Temperature in the liquid

$$\partial_t T = \alpha \Delta T$$

Laplacian in 3D

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}$$

Scaled variable

$$\Theta = rT$$

New PDE

$$\frac{\partial \Theta}{\partial t} = \alpha \frac{\partial^2 \Theta}{\partial r^2}$$

With BC

$$T(r,0) = T_0, r > R$$

 $\lim_{r \to \infty} T(t,r) = T_0, t > 0$
 $T(R(t), t) = 0, t > 0$

With BC

$$\Theta(r,0) = r T_0$$

$$\Theta(R(t), t) = 0$$

Further (neglected) complications

Advection

Convection

Conduction in solid

Solutes

. . .

The Experiment

Why a cylinder?

Experimental setup

Tank, lighting and imaging

2 cm

A non-floating ice

Morphology

Salinity effect on morphology

Freshwater

VS

Salty water

Density of fresh water

Cylinder in fresh water

Rotation prevented

Flow past a cylinder -> Re (Ra) Low High

Density of salty water

Salinity effect on morphology

Rotations and Stability

A simple harmonic model

Forces on a floating cylinder

Newton's second law

$$\hat{e}_z: \ I\ddot{\theta} = \sum_i \tau_i = \tau_{buoy} + \tau_{drag}$$

That is

$$\frac{1}{2} \frac{\rho_i}{\rho_w} V r^2 \ddot{\theta} = -g \, d(\theta) \frac{\rho_i}{\rho_w} V - \frac{1}{2} A \, C_D r \, \dot{\theta} \, |\dot{\theta}|$$

$$\ddot{\theta} = -\alpha d(\theta) - 2\frac{\rho_w}{\rho_i} C_d \dot{\theta} |\dot{\theta}|$$

A simple harmonic model

Fit to experimental data

Stability of cylinders in different conditions

Effect of time and salinity

$$d = x_{com} - x_{cob}$$

Stability of cylinders in different conditions

Effect of time and salinity

180

rotation angle [degrees]

90

-0.3

stable eq. point

270

unstable eq. point

360

S.I. =
$$(\theta_{unst} - \theta_{st}) \cdot \max(d(\theta)) \cdot g\rho *S$$

[S.I.] = N

Stability of cylinders in different conditions

Effect of time and salinity

Rotations energetically favourable

Stability increasing in time in salty water

Stratified water

Stratified water

Plumes and heat transfer

Sinking plume

Reynolds number

$$Re = \frac{u(2R)}{v}$$

Melting under convection

Nusselt number

$$\rho_{ice} \frac{\partial V}{\partial t} [L_f + c_s (T_{initial} - T_{melt})] = h(T_{water} - T_{melt}) S_{lat} + \lambda_{th} \left\langle \frac{\partial T}{\partial \hat{n}} \right\rangle_S$$

$$Nu = \frac{h}{\frac{\kappa}{\sqrt{A}}} = \frac{h\sqrt{A}}{\kappa}$$

$$Nu = \frac{\rho_{ice}\sqrt{A}\frac{\partial A}{\partial t}(L_f + c_sT_i)}{\kappa T_{water}P}$$

Melting under convection

Rayleigh number

Yamada et al., IJHMT, 1997

$$Nu_{\rm m}^* = 8.05 \times 10^{-2} Ra^{0.32} \quad (3 \times 10^7 \le Ra \le 10^9).$$

$$Ra = \frac{g\Delta\rho(2R)^3}{\alpha\nu\bar{\rho}}$$

$$\frac{Nu^{1/2}}{[1+(0.559/Pr)^{9/16}]^{16/9}} = 0.60 + 0.387 \left(\frac{Ra}{[1+(0.559/Pr)^{9/16}]^{16/9}}\right)^{1/6}. (10)$$

Churchill and Chu, IJHMT, 1975

$$Nu_d = \frac{h_m d}{k_w} = C_1 Ra_w^{1/3} \frac{A_w}{A} + C_2 Ra_a^{1/3} \frac{A_a}{A} \left(\frac{\Delta T_a}{\Delta T_w}\right) \left(\frac{k_a}{k_w}\right). \tag{40}$$

Melting under convection

Nusselt - Rayleigh scaling

Summary and conclusions

Summary

Putting everything together

$$\frac{dR}{dt} = \frac{kT_0}{\rho_s \mathcal{L}} \left\{ \frac{1}{R} + \frac{1}{\sqrt{\pi \alpha t}} \right\}$$

Advection

Convection

Conduction in solid

Solutes

. . .

2 cm

#2, t= 20 min

Results

10⁹

10⁵

10⁶

10⁷

10⁸

Ra

10¹⁰

10⁷

Ra

10⁸

10⁹

10⁵

10⁶

Conclusions

Laboratory icebergs?

- Aquarium -> Fjords
 - Confined basin, stratified polar and Atlantic waters
 - 0-50% immersion of icebergs in AW [1,2]
- Accumulation of the plume around the iceberg [3]
 - Different melting (0°C water) and diffusion timescales
 - Keel depth? Density anomaly close to iceberg?

- [1] FitzMaurice et al., Geophys. Res. Lett., 2016
- [2] Jackson et al., Nat. Geosci., 2014
- [3] Yankovsky & Yashayaev, DEEP-SEA RES PT I, 2014

Prospects

For all the melting problems

- Understanding of boundary layer interactions
- (KH?) instability and scallops

Thank you!

Extra slides

More mathematics

Spherical coordinates

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial}{\partial r})$$
$$= \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}$$

Cylindrical coordinates

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial}{\partial r})$$
$$= \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$$

$$\frac{1}{2} \frac{\partial}{\partial x} = \frac{\nabla}{R} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial}{R} \frac{\partial}{\partial x} = \frac{\partial}{R} = \frac{\partial}{R} + \frac{\partial}{R} = \frac{\partial}{R} = \frac{\partial}{R} + \frac{\partial}{R} = \frac{\partial}{R} = \frac{\partial}{R} + \frac{\partial}{R} = \frac{\partial}{R} = \frac{\partial}{R} = \frac{\partial}{R} + \frac{\partial}{R} = \frac{\partial$$

Numerics

Finite elements (pyoomph)

Numerics

Basilisk

Sinking plume

Reynolds number

x [mm]

Morton, Taylor, Turner, JFM 1956

$$b = \frac{6}{5}\alpha z$$

$$w = \frac{5}{6\alpha} \left(\frac{9}{10}\alpha B\right)^{\frac{1}{3}} \pi^{-\frac{1}{3}} z^{-\frac{1}{3}}$$